Telegram Group & Telegram Channel
В чём разница между MCAR, MAR и MNAR

Это три типа механизмов пропусков в данных — и от понимания того, какой из них у вас, зависит, как правильно обрабатывать пропущенные значения.

🔍 MCAR (Missing Completely at Random)
Пропуски появляются совершенно случайно — не зависят ни от наблюдаемых, ни от ненаблюдаемых переменных.

📌 Пример: датчик случайно перестал записывать температуру из-за сбоя связи.
Что делать: удаление строк или простая импутация — допустимо, модель почти не искажается.

🔍 MAR (Missing At Random)
Пропуски зависят от других наблюдаемых признаков, но не от самого недостающего значения.

📌 Пример: доход клиента не указан, но это чаще бывает у молодых пользователей — и возраст у нас есть.
Что делать: множественная импутация (Multiple Imputation), модели, учитывающие другие признаки, работают хорошо.

🔍 MNAR (Missing Not At Random)
Пропуски зависят от самого значения, которое пропущено.
То есть в данных есть систематическая причина, скрытая внутри пропуска.


📌 Пример: люди с высоким доходом не указывают его в анкете — именно потому, что он высокий.
Что делать: здесь простые методы не помогут. Часто требуется:
Моделировать механизм пропуска явно.
Включать индикаторы пропусков как отдельные признаки.
Использовать экспертные знания или специализированные байесовские подходы.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/979
Create:
Last Update:

В чём разница между MCAR, MAR и MNAR

Это три типа механизмов пропусков в данных — и от понимания того, какой из них у вас, зависит, как правильно обрабатывать пропущенные значения.

🔍 MCAR (Missing Completely at Random)
Пропуски появляются совершенно случайно — не зависят ни от наблюдаемых, ни от ненаблюдаемых переменных.

📌 Пример: датчик случайно перестал записывать температуру из-за сбоя связи.
Что делать: удаление строк или простая импутация — допустимо, модель почти не искажается.

🔍 MAR (Missing At Random)
Пропуски зависят от других наблюдаемых признаков, но не от самого недостающего значения.

📌 Пример: доход клиента не указан, но это чаще бывает у молодых пользователей — и возраст у нас есть.
Что делать: множественная импутация (Multiple Imputation), модели, учитывающие другие признаки, работают хорошо.

🔍 MNAR (Missing Not At Random)
Пропуски зависят от самого значения, которое пропущено.
То есть в данных есть систематическая причина, скрытая внутри пропуска.


📌 Пример: люди с высоким доходом не указывают его в анкете — именно потому, что он высокий.
Что делать: здесь простые методы не помогут. Часто требуется:
Моделировать механизм пропуска явно.
Включать индикаторы пропусков как отдельные признаки.
Использовать экспертные знания или специализированные байесовские подходы.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/979

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

How to Invest in Bitcoin?

Like a stock, you can buy and hold Bitcoin as an investment. You can even now do so in special retirement accounts called Bitcoin IRAs. No matter where you choose to hold your Bitcoin, people’s philosophies on how to invest it vary: Some buy and hold long term, some buy and aim to sell after a price rally, and others bet on its price decreasing. Bitcoin’s price over time has experienced big price swings, going as low as $5,165 and as high as $28,990 in 2020 alone. “I think in some places, people might be using Bitcoin to pay for things, but the truth is that it’s an asset that looks like it’s going to be increasing in value relatively quickly for some time,” Marquez says. “So why would you sell something that’s going to be worth so much more next year than it is today? The majority of people that hold it are long-term investors.”

Should You Buy Bitcoin?

In general, many financial experts support their clients’ desire to buy cryptocurrency, but they don’t recommend it unless clients express interest. “The biggest concern for us is if someone wants to invest in crypto and the investment they choose doesn’t do well, and then all of a sudden they can’t send their kids to college,” says Ian Harvey, a certified financial planner (CFP) in New York City. “Then it wasn’t worth the risk.” The speculative nature of cryptocurrency leads some planners to recommend it for clients’ “side” investments. “Some call it a Vegas account,” says Scott Hammel, a CFP in Dallas. “Let’s keep this away from our real long-term perspective, make sure it doesn’t become too large a portion of your portfolio.” In a very real sense, Bitcoin is like a single stock, and advisors wouldn’t recommend putting a sizable part of your portfolio into any one company. At most, planners suggest putting no more than 1% to 10% into Bitcoin if you’re passionate about it. “If it was one stock, you would never allocate any significant portion of your portfolio to it,” Hammel says.

Библиотека собеса по Data Science | вопросы с собеседований from ms


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA